New Research Aims to Improve Lyme Disease Diagnostics

Dr. Artem Rogovskyy, an associate professor at the Texas A&M School of Veterinary Medicine & Biomedical Sciences (VMBS), and Dr. Dmitry Kurouski, an assistant professor in the Texas A&M Department of Biochemistry & Biophysics and the Department of Biomedical Engineering, are testing Raman spectroscopy, a technique used to detect vibrations at the molecular level, as a diagnostic tool for Lyme disease.

“We’re trying to develop a better test that would be simple, inexpensive and accurate,” Rogovskyy said. “By accurate, I mean highly sensitive and highly specific at the same time.”

Raman Spectroscopy for Lyme Disease Diagnosis

The increased accuracy of Raman spectroscopy testing could improve Lyme disease diagnostic practices for both humans and animals believed to have been in contact with the disease.


For animals, the new test would require a smaller sample that could easily be taken in the field away from a veterinary clinic or hospital, thus improving mobile veterinary practices.

For humans, Raman spectroscopy testing could significantly decrease the amount of time needed to complete testing, increase the accuracy of the diagnosis, lower the cost of diagnosing the disease, and improve overall health outcomes by definitively diagnosing the disease earlier.

Rogovskyy said the team is in the process of validating the test through additional studies, and if the test is validated, it could become an important tool for diagnosing Lyme disease worldwide, especially in more remote areas outside the U.S. where the disease is prevalent, by enabling testing outside of traditional medical and hospital settings.

The researchers’ collaborative efforts have received funding from the Bay Area Lyme Foundation, a nonprofit that collaborates with world-class scientists and institutions to accelerate medical breakthroughs for Lyme disease. They also received human blood samples from the Lyme Disease Biobank, a clinical specimen repository.

Rogovskyy and Kurouski’s first paper published on Raman spectroscopy is the first proof-of-concept study to have explored Raman spectroscopy to diagnose mice infected with the Lyme pathogen. Their second paper included data on testing Raman spectroscopy on samples from mice infected with European Lyme pathogens, and also involved numerous human blood samples supplied by the Lyme Disease Biobank.

Rogovskyy anticipates the team may be able to publish more findings in about two years from the next phase of their research that entails testing human samples in a blind manner.

Source: Eurekalert

Source link
#Research #Aims #Improve #Lyme #Disease #Diagnostics

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *